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Stability of traveling waves in smecticC liquid crystals
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A stability analysis is carried out for a known exact traveling wave solution to a dynamic equation with
sinusoidal nonlinearities, which arises in the study of smegtljuid crystals. The analysis is set in the usual
context of traveling wave stability where suitably small perturbations may induce a phase shift to the original
traveling wave. A control parametg; which is related to the physical properties of the liquid crystal and the
applied electric field, determines the possibility of a phase shift and characterizes the possible oscillatory or
monotonic decay of the perturbations; these properties are derived from the spectrum of the perturbation
equation. The consequences of these results are discussed for a €nlégptich crystal under the influence of
an applied electric field tilted to the planes of the smectic layers and for a problem arising in chiral gbnectic-
liquid crystals.[S1063-651X98)08505-3

PACS numbdps): 61.30.Cz

[. INTRODUCTION (1.2) in samples of liquid crystal that are infinite in tlze
direction; for a discussion on the effects of finite sample
Traveling waves are known to arise in many applicationsdepth in chiral ferroelectric smectics see Maclennan, Clark,
of smectic liquid crystals. One of the most frequently occur-and Handschy2]. The relationship to sample depth for a
ring dynamic equations modeling such behavior is of theparticularly special variant of Eq1.1) involving oscillating

form electric fields has been examined by Stewart, Carlsson, and
_ _ Ardill [11].
¢2,~ Ppr=sing+ B sing cosp=F(¢,6), (1.1 To grasp some of the physics related to Et.1) we

briefly mention the equations studied by Schiller, Pelzl, and
Demus[4] and Cladis and van Saarlod$] as typical ex-
‘amples: the other equations in the aforementioned references
Ean be reformulated in a similar manner into the form of Eq.
(1.1) by suitable rescalings. Liquid crystals are anisotropic
fluids consisting of elongated molecules for which the long
— —1 _ _ molecular axes locally adopt one common direction in space
do(zt)=2tam Hex(z-ctVBL},  c=1B. 1 described by the unit vectar, called the director. Smectic-
liquid crystals are equidistant layered structures for which
The traveling wave1.2) connects the stable state=0 to  the director is tilted at a constant angl¢o the layer normal.
the state¢= 7, which is metastable fo8>1 but is gener- The unit orthogonal projectioaof n onto the smectic layers
ally unstable for <8< 1. In addition to the usual stability is commonly introduced. The orientation ofcan easily be
analysis inL,(R) for 8>1, a restricted stability concept is deduced from the orientation angfeof c. For further details
introduced below(in Sec. IV) for 0<B<1, which is com- on the modeling of smectics the reader is referred to de
mon in the theory of traveling wave stability. This allows a Gennes and Pro$t2] and Leslie, Stewart, and Nakagawa
more intricate discussion of the stability properties of Eq.[13]. In simple planar layers of smectic subjected to an
(1.2 for 0<B<1. The physical relevance of these results iselectric field at a tilted angle to the smectic layer normal

where 8>0 is a constant that depends on the physical pa
rameters of the liquid-crystal problem being investigated
This equation has been derived and examined by many a
thors (for example, see Ref§l-5]) who have exploited the
well known exact traveling wave solution

briefly pointed out in Sec. V. the orientation angleb satisfies the dynamic equatidd]
The solution(1.2) can be obtained by a phase plane analy-
sis or, in a more general way, by using a nonlinear Painleve Bdss— Npr=a sing+b sing cosp, 1.3

analysis for partial differential equations. This latter method

has recently been applied by the autf@ to produce static whereT is time, S is a spatial variable, and the constaats
and complex solutions to E¢L.1) in addition to the solution  andp are given by

(1.2. The aim of this article is to gain insight into the sta-
bility of Eq. (1.2) by examining the spectrum of a perturba-
tion equation to Eq(1.1). A similar approach to that em-
ployed below has been used in Rgfg-9] for a version of - ]
Eg. (1.1 that models crossed field effects in nematic liquid b=A€E?sir’d sira. 1.5
crystals where the sinusoidal terms are effectively replaced

by a cubic approximation imp. For general details on trav- Here B is an elastic constand is a viscosity coefficient,
eling waves in nematic and smectic liquid crystals the readef e>0 is the dielectric anisotropy of the liquid crystal, aad
should consult the reviews contained in Lam and Pfb8t.  is the magnitude of the applied tilted electric field. Equation
All of the above references relate to traveling waves for Eq(1.3) can be rescaled via

a= A €eE?sinf cos sina cosr, (1.9
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2 \ﬁ Av=v .+ i 2.6
tZTx, z=S B (1.6 —AUV=U ., CUT_T%U' (2.6)
which leads to Eq(1.1) with Following the methods of Grindrod. 5], the traveling wave

¢o is said to be stable if the eigenvaluésof A have
Re(\)=0; the case wheh =0 (the “Goldstone mode) cor-
p= 5 =tand tanx. (1.7 responds to those perturbations that result in a small phase
shift in the moving coordinate frame of the traveling wave,
The parametep will control the possible types of stability that is, ¢ converges togo(7+h) for some finiteh ast
behavior and the consequences of the results presented below>. When ReX)>0 then all perturbations decay to zero: in
will be related to Eq(1.7) in Sec. V. fact, |lv]| 2 decays likeO(e™ %) whenever Re\)=5>0 for
Cladis and van Saarlodd] have discussed Eq1.1) in  any\ belonging to the spectruii15], p. 27. We therefore
the context of the chiral smectie* phase wherde<0 and  considerg, to be stable whenever zero is an eigenvalua of

B (=A in[1], pp. 132-5is replaced by and the remainder of the spectrumAfiies in the complex
half-spacg \:Re(\)= &} for somes>0. Recall that the spec-
|A€E| 6 trum of A includes isolated eigenvalues of finite multiplicity
T 4nP - (1.8 together with the essential spectrum. For operators having

nonconstant coefficients on the right hand side of ) it
HereP is the magnitude of the polarization vecrCladis i known that the essential spectrum/fcan be located in
and van Saarloos distinguished between three main behathe complex plane via standard results as follgthss is the
iors for different values ofg, namely, 0<B<1/2, 1/2<p one-dimensional version of the result contained 18], p.
<1, andB>1. It turns out that these are precisely the ranges32): let B be the operator defined by
of B that arise naturally in the work presented below. These
results are also discussed further in Sec. V. —Bv=Duv ;= M(7)v,~N(7)v, 2.7)

whereD is a positive constantyl andN are real bounded
continuous functions andM(7)—M., N(7)—N. as 7

As mentioned in Sec. I, we discuss the stability of the— == Define
exact traveling wave solutiofl.2) to Eq.(1.1). We mainly ) . ]
consider the case fo8=1 in Sec. IlI; the position for 0 S-={\:DK*+ikM-+N.-\=0kek}, (28
<B<1 will be discussed in Sec. IV. As is common for such
equations([14], p. 158, and motivated by Eq(1.2), Eq.
(1.1) can be written in a moving coordinate frame by chang-
ing the variables to

Il. STABILITY

wherei?=—1. ThenS. consists of two curves in the com-
plex plane, each parametrized By which are symmetric
about the real axis and are asymptotic to parabolas. The es-
sential spectrum oB lies in the region between and includ-
t=t, r=z—ct. 2.1) ing S_ andS, in the comple>_< plane. _ _
The central method mentioned by Grindrod for proving
Equation(1.1) becomes stability of ¢ is to keep track of what is happening to the
spectrum ofA. The first step is to ensure that the essential
d=cd,+b..—F(d,B). (2.2 spectrum ofA lies to the right of the imaginary axis; if this is
not the case, then, as shown in Sec. IV below, we may be
We now consider solutions to E¢R.2) of the form able to “move” the essential spectrum to the right of the
imaginary axis by restricting the possible class of allowable
d(1,1)=do(7)+u(T,t), (2.3  perturbations by only considering those perturbations that lie
in a suitably weighted_, space. This leads to the second
whereu is some small perturbation to the solutighg in Eq.  step, which is to show that the isolated eigenvalueé afe
(1.2. By using the moving coordinate we can determine non-negative: this involves converting the equation to a self-
how the perturbation evolves in the moving reference framedjoint form. These two steps provide sufficient information
associated with the traveling wave;tifdecays, it will do so  to conclude that each number in the spectrumAohas a
with respect to both the coordinatesandt. This gives rise non-negative real part and so wheiir,0)— ¢q(7) € L»(R)
to the linearized perturbation equation for is sufficiently small[that is, the initial perturbation in Eq.
(2.3) is small att=0],

JF
U=, eu-— 2o U, (2.4 lp(r.t) = do(r+h)[,—0 as t—e, (2.9
where for some real constant, that is, we have a form ok,
stability. Here|-||_, denotes the usual, norm (integrating
ok with respect tor). It turns out that we can always consider
aTﬁO_COSd’OJFB CoS2y). 29 perturbations belonging to the space Ilof(R) functions

when 8=1 while for 0<8<1 we must consider more re-
Let A be the operator defined fare L,(R) by stricted perturbations lying in weightdd, spaces.
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lll. STABILITY FOR g=1 y—0 as |7/—c. (3.6

A Non-negativity of the eigenvalues The above is a singular Sturm-Liouville boundary value
In this section we begin by showing that whgre1 all  problem fory and standard results show that all the eigen-

the eigenvalues oA are real and non-negative by means ofvalues\ for Eq. (3.5 are real, and hence any eigenvalue

the techniques outlined if15], pp. 118-121. Once it is must be real for Eq(3.3). [In L, the eigenfunctions corre-

known that\ =0, the properties of the perturbation equationsponding to different eigenvalues in such singular problems

(2.6) can be discussed for both the discrete and continuougre orthogonal in view of the boundary conditiai3s6) (see,

parts of the spectrum in order to determine the types of decajpr example, Birkhoff and Rotfl7], p. 264 and this in turn

that small perturbations must obey for different valuea.of shows that the eigenvalues must be rghis follows from

We recall that for any self-adjoint operatév acting in a  the arguments used in Troutm&ts], p. 272.] Multiplying

Hilbert spaceH it is known that if\ belongs to the spectrum Eq. (3.5 by y and integratingby part$ over R gives

of A then either it is an eigenvalue or it may be regarded as

an “approximate” eigenvalue since there is always a se- 5 , | 9F c?

quence{f,} (which does not necessarily converge to a func- )‘fR y“dr= fR y-t aT,O“L 4

tion f) such that|f,|;=1 and|(A—A)f||4—0 ([16], p.

545. Thus it is important to examine the full spectrum to Differentiating Eq.(1.2) with respect tor yields

realize the behavior of the perturbations.

yz] dr. (3.7

From the definition ofF in Eq. (1.1) it follows that JF
¢0TTT+C¢OTT=£ ¢07’1 (38)
JF 0
— —B+1=F. as 7t—=*ox, (3.2 . .
do and thereforeg,, is a solution to Eq.(3.3) when A=0.
Hence y= (1) = ¢o,(7)e®d7 satisfies Eq.(3.5 when \
whereF .. represent the limits as— * o, respectively. Us- =0, Sinceg, is never zero we know that= () satisfies
ing Egs.(2.6)—(2.8), the essential spectrum &fis contained  Eq. (3.5) with A\=0 and so the expressio#iF/d¢p,+ c/4
between the curves: appearing in Eq(3.7) can be replaced witly,, /. Equation
. (3.7) can then be rewritten as
S.={\:k?®—ikc+F.—\=0;keR}. (3.2
If we suppose thaB>1 thenF..>0 and the essential spec- )\f y2d7-=f y§+ w—" yz]dr
trum lies completely in the right half of the complex plane, i E 4
by Eqg.(3.2). To prove that we have stability, that is, Rg( v P
=0, it only remains to show that the isolated eigenvalues of =f {yf—Zny T+ yz}dr
the operatoA have a non-negative real part. If such eigen- vy
values satisfy Re()>0 then there is nothing to prove. Oth- d (y\]?
erwise, suppose that R§&0 and thatue L, satisfies the :f 2 ar J) dr. 3.9
R

eigenvalue problem

JF It is now clear thatn must be non-negative and that=0
A— W) u. (3.3  only wheny is a constant multiple o, that is, when, by Eq.
0 (3.4), u is a constant multiple of,,; when this is the case,

— . . . such perturbations only result in a phase shift to the original
From this linearized equation we can approximakd d ¢, :
by F, when 7~ + to show thatu must decay exponen- wave ([15], p. 119, as in Eq.(2.9) for someh#0. It now

ol 0 2610 at least a(e ) since, by assumpton, (2o (1L s uttenty s e C2.9
Re(\)=<0. Hence ymp y '

In the next section we examine the behavior of the eigen-

0=—-Au+Au=u,tcu,+

y(7)=u(r)e®" (3.4) functlons. in order to determine the types of decay for the
perturbationau.
will certainly decay exponentially to zero as—o; simi- _ _ _
larly, considering the linear equatidB.3) when 7~ —o, y B. Asymptotic behavior of perturbations
will also tend to zero exponentially as——o. A rigorous Returning to Eq«(3.3), we now know that Re(=0 for

justification of these asymptotic properties follows from ar-gq. (3.3) and therefore we can examine E8.5) for any\ in
guments similar to those detailed below in Sec. Il B whenthe spectrum and deduce the behavior of the corresponding
the behavior related to the approximate eigenvalues for Eqy(r) via the transformatior(3.4). This approach has been
(3.3 is determined forr—c in Eq. (3.19. Hencey  adopted for equations similar to Ed..1) containing a single

e L,(R) and satisfies the self-adjoint probleifor 7< R) sinusoidal term by Bitiker and Landauef19] and Biitiker

and Thomag20]. Similar asymptotic methods for determin-
ing the continuous and discrete spectrum were used by
Schlogl, Escher, and Berf21] and here the transformations
employed in21] for an equation similar to Eq3.5) will be

with used.

C2
A= ——— Z)y:o (3.5

yTT+
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Define 1
~A, - —— (1—\—-4pb,
£=tant(\B7). (310 i exp( 205 g )7)
Then by Eq.(1.2 _ L —
+B, exp( 2\/E(1+\/ 43b+)7). (3.19

oS ¢po= —tanh(B7), (3.1

[Notice that if A had been negative thaem would have to
decay at least a®(e~ "), justifying the statement after
COg2¢o) =2 tani (/1) — 1, (312  Eq.(3.3; A, would have to be set as zero sinegtgb,
=1 for A<0.] Similarly, g_(7)>0 for —c<7<0 and
and therefore, using Eq2.5), Eq. (3.5 can be written as, j9m|q7(7)|d7<oo and therefore ag— — o

with c=1/\/B,
y(7)~A_ exp—b_7)+B_ exp(—y—b_7)

1 , (.13 (3.20
AN —+E+B(1-2 =0. 3.1
y g TETAA—28) Jy nd
Since EQ.(3.13 is an unbounded linear operator in self- 1
adjoint form its spectrum must be re@ee Kreyszig16]). u(m)~A_ exp — 248 (1—v—4pb_)7
As will be seen below, although is real the approximate
eigensolutions to Eq3.3) may be complex valued functions. 1
Defineq-(7) and the(rea) constantdb.. by +B_ exp — WE (1++—4Bb_)7|. (3.2)
— _ g2
Qe (1) =&+1+2B(1-¢9), (3.14 We requireu to vanish for bothr—oo and r— —«. Hence

B_=0 and one of the constants, , A_, andB, is a linear
. combination of the remaining two. For convenience we in-
be=\- E_IB— 1. (319 troduce the three constants

1
Theng.—0 asT— *=o respectively and Eq.3.13 can be N=B8-1 N=—+8-1 N3=8+1 (3.22
written as 4B

Firstly, consider the case whén_# 0. Then we require from
Yot [0+ +0.(7)]y=0. (316  Eq.(3.19 that —48b, <1, that is,\>\,. Also, from Eq.
(3.21), we need—4Bb_>1, that is, A <\3. Hence
The behavior of solutions for— o will be investigated first,

taking the plus signs in Ed3.16), which correspond to this A <A<Agz, (3.23
behavior. Noting that], (7)>0 for =1 and O< <o, di- i ) _
rect integration reveals that and these values of correspond to possible points in the

continuous spectrum. It is easily seen from E@15 and
1 (3.19 that when\ satisfies
JB In[costi\A7)] Ay<A<\j3 (3.24

[Ca.lar=tim
0 T—00
then the approximate solutiong7) for this part of the spec-
+2\/E tani \/,ET)— rl trum consist of damped oscillations of peried\Bb, as
7—o0 while for A ;<A<\, they decay monotonically as
1 —w. As 7— —» there is always a monotonic decay for
—— In(2)<e, (3.17  <As. _
JB The above results are true when the consfantis non-
zero. The condition(3.23 is not the only possibility for

and hence the conditions that allow the application of stanbounded approximate solutions: A, =0 then, by Eg.
dard asymptotic results for—o are satisfiedsee, for ex- (3.21, it is only known that\ <\ and therefore it only
ample, Hartmaii22], p. 381 or de Bruijif23], p. 195. ltcan  remains to locate the isolated eigenvalues of finite multiplic-

B, such that responding eigenfunctions, which we now discuss in the fol-

lowing using an argument similar to that used[&#1]. By
Egs.(2.9), (3.11), and(3.12, Eq. (3.9 is

=2\B—

y(r)~A, expgV—b,7)+B, exp(—v—b,.7),
(3.18 U +Cu+[N+E+B8(1-282)]u=0.  (3.25

irrespective of the sign db, , and therefore by E(3.4) With the transformation
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E=tanh(\/Br)=2x—1 (3.26 30

25F

and the value ot given in Eq.(1.2), Eq. (3.25 takes the Ay

form 20p damped oscillations

phase shift
1.5F
1 i +| 1+ 2 du *
X( _X) d_Xz ﬁ_ § & i monotonic decay
)\_B_l )\_B+1 0.5 -/;\‘2/ —‘}\”1' phase shift
+| 2+ 45 +4B(1_X))u=0. (3.27 0.0 r=0

0.5 1 1 1

Now insert the ansatz 10 13 2[;’ 25 30

u(x)=(1—x)Px%(x), (3.28

wherep and g are non-negative and seek solutions to Eq.

(3.27) whereg(x) is a power series that is uniformly con-
vergent atk=0 andx=1, that is, whernr— *= . The result-
ing equation forg is

d?g 1
x(l—x)WﬁL +20—2x(p+qg+1)

5

—(2pq—2+p(p+1)+q(q+1)

P(p,A,B8) Q(Q,\,B)
B v~ )=o (3.29
with
P
P(PAB)=P*~ 55 4ﬁ(x B+1), (330
B q
Q(q,x,ﬁ)—q2+ﬁ+@(x B—1). (3.3)

For g to be uniformly convergent at=0 andx=1 it is
evident from Eq(3.29 that we must have

P=Q=0. (3.32
The differential equation fog then becomes
1 dg I 1 dg Img=0
X(1—x) d—xg+[n—( +m+1)x] ax_/mg=0,
(3.33
where
m=p+q+2, (3.35
1 ! 2 3.3
n= +ﬁ+ q. (3.39

The possible solutions to E€3.33 that remain bounded as
x—1,0 consist of the hypergeometric functii24], 15.3.6,
[25], 9.153,

FIG. 1. Plots ofA;, \,, and\; given by Eq.(3.22 for g=1.
For points\ in the spectrum wherg ;<\ <\, there is the possi-
bility of monotonic decay for perturbations I, while for N,<\
<3 there may be damped oscillations of peried\Bb, as r
—o, these behaviors being superimposed upon the phase-shifted
mode given byx =0.

g(x)=F(l,m,n;x)
_F(n)F(n—I—m) _
= T(n=DT(n=m) F(I,ml+m—n+1;1-x)
n—m F(MI(I+m—n)
(10" IO (m)
XF(n=I,n—mn—I—-m+1;1-x). (3.39

Therefore, by considering the behavior»as-0 or 1, in all
relevant caseg will remain bounded whenever(l) [or
I'(m)] diverges, that is, whenevéris a nonpositive integer
[24]. As in [21], when this is the case we obtain the eigen-
functions to Eq.(3.25 [via Egs.(3.28 and (3.32], which
correspond to discrete eigenvaluesThe first case to con-
sider isl=—1, that is,p+q=0. This implies thap=qg=0
(because of their assumed non-negativity in deriving Egs.
(3.29 to (3.33] and then Egs(3.30 and(3.31) are incon-
sistent with the requiremer{8.32. Hencel=—1 does not
lead to a solution of Eq(3.33. The only remaining possi-
bility is 1=0, that is,p+qg=1. Here, subtracting Eq3.31)
from (3.30 shows thap=q since Eq(3.32 must hold; thus
p=q=1/2. This forces Eqs3.30 and(3.31) to be consis-
tent with Eq.(3.32 only if A=0. Sincel =0 forcesF=1 it
follows that generallyg=gy=const and hence the required
corresponding solutiong is given by

)V li2—

Ug(7)=go(1—x % sechj\/ﬁr). (3.38

This solution for the isolated eigenvalue=0 is simply a
multiple of ¢, the derivative of the traveling wave solution
in Eq. (1.2, as can be checked directly. Thus the only dis-
crete mode is forx=0 whose eigenfunction represents a
phase shift to the original traveling wave, as mentioned in
Sec. Il A. Notice thatn =0 is always outside the continuous
spectrum for3>1. These results are summarized in Fig. 1.
Further use of Eq(3.38 will be made in the next section.
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IV. STABILITY FOR 0 <B<1 1

2, oot ( )2_

A. Non-negativity of the eigenvalues Femyitey= B B=3| =2=0
For 0<B<1 Eq.(3.]) is still valid, the only difference c 1

being thatF _>0 while F, <0. Equation(3.2) then shows _C_ =
that the essential spectrum can lie partly in the left half of the whenever y 2 2B 4.6
complex plane and therefore some part of the spectrum for
problem(3.3) may have a negative real part, indicating pos-This choice ofy ensures that Ref=0 for A in the essential
sible instability. Nevertheless, if the perturbations are morespectrum and allows us to use the transformatidd) to
restricted and belong to a weightég space, as indicated convert the problem to self-adjoint form. An identical argu-
below, then the essential spectrum arising from this restricment to that given in Sec. 11l A then shows that the spectrum
tion can lie in the right half of the complex plane. We showis real and thal=0 for all A belonging to the spectrum.
that it is possible to have stability fo08< 1 when suitably From Eq.(4.5) it is certainly true that the essential spectrum

restricted perturbations are considered. is contained in the intervgl\,,<). It follows that for O
Following the methods outlined ifl5], pp. 31-34, we <B<1 the traveling waveb, is stable to perturbations I}
require perturbationsa(r) to satisfy with y given by Eq.(4.6).
12
||U||L7:{f e2”|u(7-)|2d7-] <o, (4.1 B. Asymptotic behavior of perturbations
2 R

Throughout this section we assumeis given by Eqg.

(4.6). Using the results in Sec. Il B, we know thats L
wherey>0 is to be determined. Here the weighting function|eads to considering the behavior of=u(7)e’” as =
is the exponential term in E@¢4.1); wheny=0 we recover _, +. For any A belonging to the essential spectrum
the usual space df, functions. As in[15], define the opera- (which is contained ifi\ ,,%)) the “approximate” solutions
tor A* to be the restriction oA to the spacé ] whereycan  have monotonic decay. Fddiscreté eigenvalues of finite
be sought such that the essential spectrum’oflies to the  multiplicity the required results are given in Ed8.18 and
right of the imaginary axis, that is, we restrict the perturba-(3.20. For u to be contained inLY for such isolated eigen-
tions to lie in a suitable spade}. We first notice that\* values it is readily seen from E¢3.18 that we needb,
acting in the spack] is equivalent tee?”’A* (ve™?") acting <0 andA, =0, which means that

on functionsv e L,. This leads us to define the operatr

Similarly, from Eq. (3.20 we requireB_=0 andb_<0,
leading to the restriction that <1/48+ B8+ 1. Since both
equationg3.18 and(3.20 must be integrable we need con-
dition (4.7) to hold in both cases: this provides an upper
bound for any considered possible isolated eigenvalues. No-
tice that\,=0 at 8=1/2 andA,>0 for B8+ 1/2.

The argument in the latter part of Sec. Ill B, from Eq.
(3.295 onwards, can be employed here to show that the only
possible eigenfunction is that given ly(7) in Eq. (3.38
whenX=0. To check that such a perturbation isLi§ it is
necessary to look at the behavior as-=*o; clearly,

Now we can use the same argument for obtaining the modido(7)€”"—0 as7— —o while
fied version of Eq(3.2) using Eqs(2.7) and(2.8) to find that o (2N (2B-1)

the essential spectrum ®¥, and hence that oA*, lies be- Uo(7)e”"~€ (4.8
tween the curves

: ) (4.2)

W=ge?"A* ( o7
which is the operator oh, induced byA*. The spectrum of
W coincides with that oA* and, further,

5 JF
~Wu=v_+(C=2y)v,+|y —Cy—w v. (4.3
0

as 7—o. Thereforeupe L} provided3>1/2 in which case
Ug induces, as before, a phase shift to the original solution.
S.={\:k?+(2y—c)ki+(F.—y*+cy)—A=0;keR}. For 0<B=<1/2 only the essential spectrum is available; this
(4.9 indicates that\ =0 is no longer an isolated eigenvalue and
therefore perturbations must decay monotonically to zero in
Thus the essential spectrum Af is contained in the right L} (isolated eigenvalues often vanish when working in
half plane weighted spacefl5]). This also means, in contrast to the
previous cases, that there is no phase shift imposed upon the
> original solution for 6< 8< 1/2 when perturbations belong to
REM=F. —y ey, @9 LJ. These results are summarized in Fig. 2.
with F, given by Eq.(1.2). The problem is to now find V. DISCUSSION
values ofy such that Re\)=0, which will allow us to trans-
form the problem to self-adjoint form. It will be sufficient for It has been shown that the traveling wave solutibs2) is
our purposes to notice that, for any<@B<1, we have linearly stable forB=1 and that there is always a small
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FIG. 2. For 1/2 <1 there is the possibility that perturbations  FIG. 3. Contours as indicated of the paramegegiven by Eq.
belonging toL} consist of monotonic decay superimposed upon the(1.7) for 0=a<85° and 0<¢=85°. The possible effects of suit-
phase-shifted solution at=0 when\>X\,. For 0<p<1/2 there  ably small perturbations are schematically summariesi Secs.

cannot be a phase-shifted solution and therefore all perturbations # and 1V in the texd. The possibility of an induced phase shift to
L decay monotonically to zero. the original traveling wave1.2) and the decay properties of the

perturbations are as shown. Perturbatianselong toL, for g=1
phase shift to this original solution when it is subjected toand toLj for S<1.

small perturbations belonging to,(R). The possible decay . o ] )
properties of such perturbations have been characterized fRis Wave speed coincides with that given by En2). The

Fig. 1 via an investigation of the possible spectrum arising©€Sults presented in this present article for 8<1/2 indi-
from the perturbation equation. In addition to the phase shiffate that the perturbation decays monotonically, that is, Eq.
a superimposed monotonic and/or oscillatory decay is pos-l-2 is stable inL(R). This apparent inconsistency with the
sible with these perturbations. For<(B<1 the solution ~Work in[1]is resolved by other physical and mathematical
(1.2) is stable when the small perturbations belongLth argument$26] where the value of the velocity is “selected”
[defined in Eq.(4.)] with y=1/(2y/B). When 1/2<pg<1 Dy some type of dynamical mechanism whes 1, as men-
such perturbations induce a small phase shift while for gioned in[1]. Restricting the choice of perturbations so that
<pB=<1/2 all perturbations decay to zero with, in contrast tothey belong toL 5(R) limits the allowed physical forms of
the other cases, no phase shift imposed upon the origin@erturbatmn: the large behavior of the original perturbation
traveling wave. These decay properties are characterized fRUst be better controlled so that it is if(R). This means
Fig. 2. that Eqg.(1.2), although mathematically a solution, is not in

These results can be interpreted from the physical point ogeneral the physically relevant solution fg<1/2 for the
view in relation to the work by Schilleet al. [4] via equa-  Problem in[1] unless the original perturbations to EG.2)
tions (1.3)—(1.7). Figure 3 shows contour plots for E(..7) always lie inLJ(R). A reported preliminary analysis by Cla-
at3=0, 1/2 and 1 for @& a<85° and G< #<85°. The three dis and van Saarlos®f [40] of Ref. [1]) shows that 1/2
ranges of3 considered in Secs. Il and IV lead to three <B<1 corresponds to a “case Il marginal stability,” as
regions in theda parameter space as indicated in the figurediscussed by Ben-Jacddt al. [27]. In this regime the exact
For each of these regions the possible effects of suitablgolution (1.2) is the physically relevant one. F@>1 the
small perturbations are summarized: the original travelingsolution (1.2) describes a front propagating from a meta-
wave may or may not have an induced phase shift, as indistable state into a stable state and this exact solution is again
cated schematically in the figure; the possibilities for monothe physically meaningful one. F@=1/2 the stability re-
tonic and/or oscillatory decay of the perturbations are alseults reported here are therefore consistent with tho$g]in
shown. and there will always be a phase shift to Hd.2) upon

Cladis and van Saarlog4] have discussed marginal sta- perturbation for>1/2 with, by the comments after Eq.
bility for B given by Eq.(1.8) for the same regimes of posi- (4.8), no phase shift fo8=1/2. The decay properties of the
tive values as discussed above. In summary, their results iperturbations remain as discussed in Secs. Il and 1V,
dicate that for 62 8<<1/2, the more relevant solution for the namely, monotonic decay for ¥28<1 and monotonic
problem they investigate is not the exact soluti@®) but and/or oscillatory decay fo>1. Front propagation and
rather a marginal stability solution with a wave speed ofmarginal stability has been discussed further by van Saar-
2(1—B)*? relevant for small fields. Clearly, whe=1/2  loos, Hecke, and Holyg8].
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