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Stability of traveling waves in smectic-C liquid crystals

I. W. Stewart
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A stability analysis is carried out for a known exact traveling wave solution to a dynamic equation with
sinusoidal nonlinearities, which arises in the study of smectic-C liquid crystals. The analysis is set in the usual
context of traveling wave stability where suitably small perturbations may induce a phase shift to the original
traveling wave. A control parameterb, which is related to the physical properties of the liquid crystal and the
applied electric field, determines the possibility of a phase shift and characterizes the possible oscillatory or
monotonic decay of the perturbations; these properties are derived from the spectrum of the perturbation
equation. The consequences of these results are discussed for a smectic-C liquid crystal under the influence of
an applied electric field tilted to the planes of the smectic layers and for a problem arising in chiral smectic-C
liquid crystals.@S1063-651X~98!08505-5#

PACS number~s!: 61.30.Cz
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I. INTRODUCTION

Traveling waves are known to arise in many applicatio
of smectic liquid crystals. One of the most frequently occ
ring dynamic equations modeling such behavior is of
form

fzz2f t5sinf1b sinf cosf[F~f,b!, ~1.1!

whereb.0 is a constant that depends on the physical
rameters of the liquid-crystal problem being investigat
This equation has been derived and examined by many
thors ~for example, see Refs.@1–5#! who have exploited the
well known exact traveling wave solution

f0~z,t !52 tan21$exp@~z2ct!Ab#%, c51/Ab.
~1.2!

The traveling wave~1.2! connects the stable statef50 to
the statef5p, which is metastable forb.1 but is gener-
ally unstable for 0,b,1. In addition to the usual stability
analysis inL2(R) for b.1, a restricted stability concept i
introduced below~in Sec. IV! for 0,b,1, which is com-
mon in the theory of traveling wave stability. This allows
more intricate discussion of the stability properties of E
~1.2! for 0,b,1. The physical relevance of these results
briefly pointed out in Sec. V.

The solution~1.2! can be obtained by a phase plane ana
sis or, in a more general way, by using a nonlinear Painl´
analysis for partial differential equations. This latter meth
has recently been applied by the author@6# to produce static
and complex solutions to Eq.~1.1! in addition to the solution
~1.2!. The aim of this article is to gain insight into the st
bility of Eq. ~1.2! by examining the spectrum of a perturb
tion equation to Eq.~1.1!. A similar approach to that em
ployed below has been used in Refs.@7–9# for a version of
Eq. ~1.1! that models crossed field effects in nematic liqu
crystals where the sinusoidal terms are effectively repla
by a cubic approximation inf. For general details on trav
eling waves in nematic and smectic liquid crystals the rea
should consult the reviews contained in Lam and Prost@10#.
All of the above references relate to traveling waves for E
571063-651X/98/57~5!/5626~8!/$15.00
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~1.1! in samples of liquid crystal that are infinite in thez
direction; for a discussion on the effects of finite samp
depth in chiral ferroelectric smectics see Maclennan, Cla
and Handschy@2#. The relationship to sample depth for
particularly special variant of Eq.~1.1! involving oscillating
electric fields has been examined by Stewart, Carlsson,
Ardill @11#.

To grasp some of the physics related to Eq.~1.1! we
briefly mention the equations studied by Schiller, Pelzl, a
Demus@4# and Cladis and van Saarloos@1# as typical ex-
amples: the other equations in the aforementioned refere
can be reformulated in a similar manner into the form of E
~1.1! by suitable rescalings. Liquid crystals are anisotro
fluids consisting of elongated molecules for which the lo
molecular axes locally adopt one common direction in sp
described by the unit vectorn, called the director. Smectic-C
liquid crystals are equidistant layered structures for wh
the director is tilted at a constant angleu to the layer normal.
The unit orthogonal projectionc of n onto the smectic layers
is commonly introduced. The orientation ofn can easily be
deduced from the orientation anglef of c. For further details
on the modeling of smectics the reader is referred to
Gennes and Prost@12# and Leslie, Stewart, and Nakagaw
@13#. In simple planar layers of smecticC subjected to an
electric field at a tilted anglea to the smectic layer norma
the orientation anglef satisfies the dynamic equation@4#

BfSS2lfT5a sinf1b sinf cosf, ~1.3!

whereT is time, S is a spatial variable, and the constantsa
andb are given by

a5DeE2sinu cosu sina cosa, ~1.4!

b5DeE2sin2u sin2a. ~1.5!

Here B is an elastic constant,l is a viscosity coefficient,
De.0 is the dielectric anisotropy of the liquid crystal, andE
is the magnitude of the applied tilted electric field. Equati
~1.3! can be rescaled via
5626 © 1998 The American Physical Society
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t5T
a

l
, z5SAa

B
, ~1.6!

which leads to Eq.~1.1! with

b5
b

a
5tanu tana. ~1.7!

The parameterb will control the possible types of stability
behavior and the consequences of the results presented b
will be related to Eq.~1.7! in Sec. V.

Cladis and van Saarloos@1# have discussed Eq.~1.1! in
the context of the chiral smectic-C* phase whereDe,0 and
b ~5D in @1#, pp. 132–5! is replaced by

b5
uDeEuu

4pP
. ~1.8!

HereP is the magnitude of the polarization vectorP. Cladis
and van Saarloos distinguished between three main be
iors for different values ofb, namely, 0,b,1/2, 1/2,b
,1, andb.1. It turns out that these are precisely the rang
of b that arise naturally in the work presented below. The
results are also discussed further in Sec. V.

II. STABILITY

As mentioned in Sec. I, we discuss the stability of t
exact traveling wave solution~1.2! to Eq. ~1.1!. We mainly
consider the case forb>1 in Sec. III; the position for 0
,b,1 will be discussed in Sec. IV. As is common for su
equations~@14#, p. 158!, and motivated by Eq.~1.2!, Eq.
~1.1! can be written in a moving coordinate frame by chan
ing the variables to

t5t, t5z2ct. ~2.1!

Equation~1.1! becomes

f t5cft1ftt2F~f,b!. ~2.2!

We now consider solutions to Eq.~2.2! of the form

f~t,t !5f0~t!1u~t,t !, ~2.3!

whereu is some small perturbation to the solutionf0 in Eq.
~1.2!. By using the moving coordinatet we can determine
how the perturbation evolves in the moving reference fra
associated with the traveling wave; ifu decays, it will do so
with respect to both the coordinatest and t. This gives rise
to the linearized perturbation equation foru,

ut5utt1cut2
]F

]f0
u, ~2.4!

where

]F

]f0
5cosf01b cos~2f0!. ~2.5!

Let A be the operator defined forvPL2(R) by
low

v-

s
e

-

e

2Av5vtt1cvt2
]F

]f0
v. ~2.6!

Following the methods of Grindrod@15#, the traveling wave
f0 is said to be stable if the eigenvaluesl of A have
Re(l)>0; the case whenl50 ~the ‘‘Goldstone mode’’! cor-
responds to those perturbations that result in a small ph
shift in the moving coordinate frame of the traveling wav
that is, f converges tof0(t1h) for some finiteh as t
→`. When Re(l).0 then all perturbations decay to zero:
fact, iviL2 decays likeO(e2dt) whenever Re(l)>d.0 for
any l belonging to the spectrum~@15#, p. 27!. We therefore
considerf0 to be stable whenever zero is an eigenvalue oA
and the remainder of the spectrum ofA lies in the complex
half-space$l:Re(l)>d% for somed.0. Recall that the spec
trum of A includes isolated eigenvalues of finite multiplicit
together with the essential spectrum. For operators hav
nonconstant coefficients on the right hand side of Eq.~2.6! it
is known that the essential spectrum ofA can be located in
the complex plane via standard results as follows~this is the
one-dimensional version of the result contained in@15#, p.
32!: let B be the operator defined by

2Bv5Dvtt2M ~t!vt2N~t!v, ~2.7!

whereD is a positive constant,M and N are real bounded
continuous functions andM (t)→M 6 , N(t)→N6 as t
→6`. Define

S65$l:Dk21 ikM 61N62l50;kPR%, ~2.8!

wherei 2521. ThenS6 consists of two curves in the com
plex plane, each parametrized byk, which are symmetric
about the real axis and are asymptotic to parabolas. The
sential spectrum ofB lies in the region between and includ
ing S2 andS1 in the complex plane.

The central method mentioned by Grindrod for provi
stability of f0 is to keep track of what is happening to th
spectrum ofA. The first step is to ensure that the essen
spectrum ofA lies to the right of the imaginary axis; if this i
not the case, then, as shown in Sec. IV below, we may
able to ‘‘move’’ the essential spectrum to the right of th
imaginary axis by restricting the possible class of allowa
perturbations by only considering those perturbations tha
in a suitably weightedL2 space. This leads to the secon
step, which is to show that the isolated eigenvalues ofA are
non-negative: this involves converting the equation to a s
adjoint form. These two steps provide sufficient informati
to conclude that each number in the spectrum ofA has a
non-negative real part and so whenf(t,0)2f0(t)PL2(R)
is sufficiently small@that is, the initial perturbationu in Eq.
~2.3! is small att50#,

if~t,t !2f0~t1h!iL2
→0 as t→`, ~2.9!

for some real constanth, that is, we have a form ofL2
stability. Herei•iL2

denotes the usualL2 norm ~integrating
with respect tot!. It turns out that we can always consid
perturbations belonging to the space ofL2(R) functions
when b>1 while for 0,b,1 we must consider more re
stricted perturbations lying in weightedL2 spaces.
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III. STABILITY FOR b>1

A. Non-negativity of the eigenvalues

In this section we begin by showing that whenb>1 all
the eigenvalues ofA are real and non-negative by means
the techniques outlined in@15#, pp. 118–121. Once it is
known thatl>0, the properties of the perturbation equati
~2.6! can be discussed for both the discrete and continu
parts of the spectrum in order to determine the types of de
that small perturbations must obey for different values ofl.
We recall that for any self-adjoint operatorA acting in a
Hilbert spaceH it is known that ifl belongs to the spectrum
of A then either it is an eigenvalue or it may be regarded
an ‘‘approximate’’ eigenvalue since there is always a
quence$ f n% ~which does not necessarily converge to a fun
tion f ! such thati f niH51 and i(lI 2A) f niH→0 ~@16#, p.
545!. Thus it is important to examine the full spectrum
realize the behavior of the perturbations.

From the definition ofF in Eq. ~1.1! it follows that

]F

]f0
→b71[F6 as t→6`, ~3.1!

whereF6 represent the limits ast→6`, respectively. Us-
ing Eqs.~2.6!–~2.8!, the essential spectrum ofA is contained
between the curves:

S65$l:k22 ikc1F62l50;kPR%. ~3.2!

If we suppose thatb.1 thenF6.0 and the essential spec
trum lies completely in the right half of the complex plan
by Eq. ~3.2!. To prove that we have stability, that is, Re(l)
>0, it only remains to show that the isolated eigenvalues
the operatorA have a non-negative real part. If such eige
values satisfy Re(l).0 then there is nothing to prove. Oth
erwise, suppose that Re(l)<0 and thatuPL2 satisfies the
eigenvalue problem

052Au1lu5utt1cut1S l2
]F

]f0
Du. ~3.3!

From this linearized equation we can approximate]F/]f0
by F1 when t;1` to show thatu must decay exponen
tially to zero at least asO(e2ct) since, by assumption
Re(l)<0. Hence

y~t!5u~t!e~c/2!t ~3.4!

will certainly decay exponentially to zero ast→`; simi-
larly, considering the linear equation~3.3! whent;2`, y
will also tend to zero exponentially ast→2`. A rigorous
justification of these asymptotic properties follows from a
guments similar to those detailed below in Sec. III B wh
the behavior related to the approximate eigenvalues for
~3.3! is determined fort→` in Eq. ~3.19!. Hence y
PL2(R) and satisfies the self-adjoint problem~for tPR!

ytt1S l2
]F

]f0
2

c2

4 D y50 ~3.5!

with
f

us
ay

s
-
-

,

f
-

-

q.

y→0 as utu→`. ~3.6!

The above is a singular Sturm-Liouville boundary val
problem fory and standard results show that all the eige
valuesl for Eq. ~3.5! are real, and hence any eigenvaluel
must be real for Eq.~3.3!. @In L2 the eigenfunctions corre
sponding to different eigenvalues in such singular proble
are orthogonal in view of the boundary conditions~3.6! ~see,
for example, Birkhoff and Rota@17#, p. 264! and this in turn
shows that the eigenvalues must be real~this follows from
the arguments used in Troutman@18#, p. 272!.# Multiplying
Eq. ~3.5! by y and integrating~by parts! over R gives

lE
R

y2dt5E
R
H yt

21S ]F

]f0
1

c2

4 D y2J dt. ~3.7!

Differentiating Eq.~1.2! with respect tot yields

f0ttt1cf0tt5
]F

]f0
f0t , ~3.8!

and thereforef0t is a solution to Eq.~3.3! when l50.
Hence y5c(t)[f0t(t)e(c/2)t satisfies Eq.~3.5! when l
50. Sincef0 is never zero we know thaty5c(t) satisfies
Eq. ~3.5! with l50 and so the expression]F/]f01c2/4
appearing in Eq.~3.7! can be replaced withctt /c. Equation
~3.7! can then be rewritten as

lE
R

y2dt5E
R
H yt

21
ctt

c
y2J dt

5E
R
H yt

222yyt

ct

c
1

ct
2

c2 y2J dt

5E
R
c2F d

dt S y

c D G2

dt. ~3.9!

It is now clear thatl must be non-negative and thatl50
only wheny is a constant multiple ofc, that is, when, by Eq.
~3.4!, u is a constant multiple off0t ; when this is the case
such perturbations only result in a phase shift to the origi
wave ~@15#, p. 119!, as in Eq.~2.9! for somehÞ0. It now
follows that if uPL2(R) is sufficiently small then Eq.~2.9!
is true and we can conclude thatf0 is asymptotically stable.
In the next section we examine the behavior of the eig
functions in order to determine the types of decay for
perturbationsu.

B. Asymptotic behavior of perturbations

Returning to Eq.~3.3!, we now know that Re(l)>0 for
Eq. ~3.3! and therefore we can examine Eq.~3.5! for anyl in
the spectrum and deduce the behavior of the correspon
u(t) via the transformation~3.4!. This approach has bee
adopted for equations similar to Eq.~1.1! containing a single
sinusoidal term by Bu¨ttiker and Landauer@19# and Büttiker
and Thomas@20#. Similar asymptotic methods for determin
ing the continuous and discrete spectrum were used
Schlogl, Escher, and Berry@21# and here the transformation
employed in@21# for an equation similar to Eq.~3.5! will be
used.
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Define

j5tanh~Abt!. ~3.10!

Then by Eq.~1.2!

cosf052tanh~Abt!, ~3.11!

cos~2f0!52 tanh2~Abt!21, ~3.12!

and therefore, using Eq.~2.5!, Eq. ~3.5! can be written as,
with c51/Ab,

ytt1S l2
1

4b
1j1b~122j2! D y50. ~3.13!

Since Eq.~3.13! is an unbounded linear operator in se
adjoint form its spectrum must be real~see Kreyszig@16#!.
As will be seen below, althoughl is real the approximate
eigensolutions to Eq.~3.3! may be complex valued functions
Defineq6(t) and the~real! constantsb6 by

q6~t!5j7112b~12j2!, ~3.14!

b65l2
1

4b
2b61. ~3.15!

Thenq6→0 ast→6` respectively and Eq.~3.13! can be
written as

ytt1@b61q6~t!#y50. ~3.16!

The behavior of solutions fort→` will be investigated first,
taking the plus signs in Eq.~3.16!, which correspond to this
behavior. Noting thatq1(t).0 for b>1 and 0<t,`, di-
rect integration reveals that

E
0

`

uq1~t!udt5 lim
t→`

F 1

Ab
ln@cosh~Abt!#

12Ab tanh~Abt!2tG
52Ab2

1

Ab
ln~2!,`, ~3.17!

and hence the conditions that allow the application of st
dard asymptotic results fort→` are satisfied~see, for ex-
ample, Hartman@22#, p. 381 or de Brujin@23#, p. 195!. It can
now be asserted that fort→` there are constantsA1 and
B1 such that

y~t!;A1 exp~A2b1t!1B1 exp~2A2b1t!,
~3.18!

irrespective of the sign ofb1 , and therefore by Eq.~3.4!
-

u~t!;A1 expS 2
1

2Ab
~12A24bb1!t D

1B1 expS 2
1

2Ab
~11A24bb1!t D . ~3.19!

@Notice that if l had been negative thenu would have to
decay at least asO(e2t/Ab), justifying the statement afte
Eq. ~3.3!; A1 would have to be set as zero since24bb1

>1 for l,0.# Similarly, q2(t).0 for 2`,t<0 and
*2`

0 uq2(t)udt,` and therefore ast→2`

y~t!;A2 exp~A2b2t!1B2 exp~2A2b2t!
~3.20!

and

u~t!;A2 expS 2
1

2Ab
~12A24bb2!t D

1B2 expS 2
1

2Ab
~11A24bb2!t D . ~3.21!

We requireu to vanish for botht→` andt→2`. Hence
B250 and one of the constantsA1 , A2 , andB1 is a linear
combination of the remaining two. For convenience we
troduce the three constants

l15b21, l25
1

4b
1b21, l35b11. ~3.22!

Firstly, consider the case whenA1Þ0. Then we require from
Eq. ~3.19! that 24bb1,1, that is,l.l1 . Also, from Eq.
~3.21!, we need24bb2.1, that is,l,l3 . Hence

l1,l,l3 , ~3.23!

and these values ofl correspond to possible points in th
continuous spectrum. It is easily seen from Eqs.~3.15! and
~3.19! that whenl satisfies

l2,l,l3 ~3.24!

then the approximate solutionsu(t) for this part of the spec-
trum consist of damped oscillations of periodp/Abb1 as
t→` while for l1,l,l2 they decay monotonically ast
→`. As t→2` there is always a monotonic decay forl
,l3 .

The above results are true when the constantA1 is non-
zero. The condition~3.23! is not the only possibility for
bounded approximate solutions: ifA150 then, by Eq.
~3.21!, it is only known thatl,l3 and therefore it only
remains to locate the isolated eigenvalues of finite multip
ity ~which lie outside the essential spectrum! with their cor-
responding eigenfunctions, which we now discuss in the
lowing using an argument similar to that used in@21#. By
Eqs.~2.5!, ~3.11!, and~3.12!, Eq. ~3.3! is

utt1cut1@l1j1b~122j2!#u50. ~3.25!

With the transformation
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j5tanh~Abt!52x21 ~3.26!

and the value ofc given in Eq.~1.2!, Eq. ~3.25! takes the
form

x~12x!
d2u

dx2 1S 11
1

2b
22xD du

dx

1S 21
l2b21

4bx
1

l2b11

4b~12x! Du50. ~3.27!

Now insert the ansatz

u~x!5~12x!pxqg~x!, ~3.28!

where p and q are non-negative and seek solutions to E
~3.27! whereg(x) is a power series that is uniformly con
vergent atx50 andx51, that is, whent→6`. The result-
ing equation forg is

x~12x!
d2g

dx2 1S 11
1

2b
12q22x~p1q11! D dg

dx

2S 2pq221p~p11!1q~q11!

2
P~p,l,b!

12x
2

Q~q,l,b!

x Dg50 ~3.29!

with

P~p,l,b!5p22
p

2b
1

1

4b
~l2b11!, ~3.30!

Q~q,l,b!5q21
q

2b
1

1

4b
~l2b21!. ~3.31!

For g to be uniformly convergent atx50 and x51 it is
evident from Eq.~3.29! that we must have

P5Q50. ~3.32!

The differential equation forg then becomes

x~12x!
d2g

dx2 1@n2~ l 1m11!x#
dg

dx
2 lmg50,

~3.33!

where

l 5p1q21, ~3.34!

m5p1q12, ~3.35!

n511
1

2b
12q. ~3.36!

The possible solutions to Eq.~3.33! that remain bounded a
x→1,0 consist of the hypergeometric function~@24#, 15.3.6,
@25#, 9.153!,
.

g~x!5F~ l ,m,n;x!

5
G~n!G~n2 l 2m!

G~n2 l !G~n2m!
F~ l ,m,l 1m2n11;12x!

1~12x!n2 l 2m
G~n!G~ l 1m2n!

G~ l !G~m!

3F~n2 l ,n2m,n2 l 2m11;12x!. ~3.37!

Therefore, by considering the behavior asx→0 or 1, in all
relevant casesg will remain bounded wheneverG( l ) @or
G(m)# diverges, that is, wheneverl is a nonpositive integer
@24#. As in @21#, when this is the case we obtain the eige
functions to Eq.~3.25! @via Eqs. ~3.28! and ~3.32!#, which
correspond to discrete eigenvaluesl. The first case to con-
sider isl 521, that is,p1q50. This implies thatp5q50
~because of their assumed non-negativity in deriving E
~3.29! to ~3.33!# and then Eqs.~3.30! and ~3.31! are incon-
sistent with the requirement~3.32!. Hencel 521 does not
lead to a solution of Eq.~3.33!. The only remaining possi-
bility is l 50, that is,p1q51. Here, subtracting Eq.~3.31!
from ~3.30! shows thatp5q since Eq.~3.32! must hold; thus
p5q51/2. This forces Eqs.~3.30! and ~3.31! to be consis-
tent with Eq.~3.32! only if l50. Sincel 50 forcesF[1 it
follows that generallyg5g0[const and hence the require
corresponding solutionu0 is given by

u0~t!5g0~12x!1/2x1/25
g0

2
sech~Abt!. ~3.38!

This solution for the isolated eigenvaluel50 is simply a
multiple of f0t , the derivative of the traveling wave solutio
in Eq. ~1.2!, as can be checked directly. Thus the only d
crete mode is forl50 whose eigenfunction represents
phase shift to the original traveling wave, as mentioned
Sec. III A. Notice thatl50 is always outside the continuou
spectrum forb.1. These results are summarized in Fig.
Further use of Eq.~3.38! will be made in the next section.

FIG. 1. Plots ofl1 , l2 , andl3 given by Eq.~3.22! for b>1.
For pointsl in the spectrum wherel1,l,l2 there is the possi-
bility of monotonic decay for perturbations inL2 while for l2,l
,l3 there may be damped oscillations of periodp/Abb1 as t
→`, these behaviors being superimposed upon the phase-sh
mode given byl50.
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IV. STABILITY FOR 0 <b<1

A. Non-negativity of the eigenvalues

For 0,b,1 Eq. ~3.1! is still valid, the only difference
being thatF2.0 while F1,0. Equation~3.2! then shows
that the essential spectrum can lie partly in the left half of
complex plane and therefore some part of the spectrum
problem~3.3! may have a negative real part, indicating po
sible instability. Nevertheless, if the perturbations are m
restricted and belong to a weightedL2 space, as indicated
below, then the essential spectrum arising from this rest
tion can lie in the right half of the complex plane. We sho
that it is possible to have stability for 0,b,1 when suitably
restricted perturbations are considered.

Following the methods outlined in@15#, pp. 31–34, we
require perturbationsu(t) to satisfy

iuiL
2
g5H E

R
e2gtuu~t!u2dtJ 1/2

,`, ~4.1!

whereg.0 is to be determined. Here the weighting functi
is the exponential term in Eq.~4.1!; wheng50 we recover
the usual space ofL2 functions. As in@15#, define the opera-
tor A* to be the restriction ofA to the spaceL2

g whereg can
be sought such that the essential spectrum ofA* lies to the
right of the imaginary axis, that is, we restrict the perturb
tions to lie in a suitable spaceL2

g . We first notice thatA*
acting in the spaceL2

g is equivalent toegtA* (ve2gt) acting
on functionsvPL2 . This leads us to define the operatorW
by

W5egtA* S •

egtD , ~4.2!

which is the operator onL2 induced byA* . The spectrum of
W coincides with that ofA* and, further,

2Wv5vtt1~c22g!vt1S g22cg2
]F

]f0
D v. ~4.3!

Now we can use the same argument for obtaining the m
fied version of Eq.~3.2! using Eqs.~2.7! and~2.8! to find that
the essential spectrum ofW, and hence that ofA* , lies be-
tween the curves

S65$l:k21~2g2c!ki1~F62g21cg!2l50;kPR%.
~4.4!

Thus the essential spectrum ofA* is contained in the right
half plane

Re~l!>F12g21cg, ~4.5!

with F1 given by Eq. ~1.2!. The problem is to now find
values ofg such that Re(l)>0, which will allow us to trans-
form the problem to self-adjoint form. It will be sufficient fo
our purposes to notice that, for any 0,b,1, we have
e
or
-
e

c-

-

i-

F12g21cg5
1

b S b2
1

2D 2

5l2>0

whenever g5
c

2
5

1

2Ab
. ~4.6!

This choice ofg ensures that Re(l)>0 for l in the essential
spectrum and allows us to use the transformation~3.4! to
convert the problem to self-adjoint form. An identical arg
ment to that given in Sec. III A then shows that the spectr
is real and thatl>0 for all l belonging to the spectrum
From Eq.~4.5! it is certainly true that the essential spectru
is contained in the interval@l2 ,`). It follows that for 0
,b,1 the traveling wavef0 is stable to perturbations inL2

g

with g given by Eq.~4.6!.

B. Asymptotic behavior of perturbations

Throughout this section we assumeg is given by Eq.
~4.6!. Using the results in Sec. III B, we know thatuPL2

g

leads to considering the behavior ofy5u(t)egt as t
→6`. For any l belonging to the essential spectru
„which is contained in@l2 ,`)… the ‘‘approximate’’ solutions
have monotonic decay. For~discrete! eigenvalues of finite
multiplicity the required results are given in Eqs.~3.18! and
~3.20!. For u to be contained inL2

g for such isolated eigen
values it is readily seen from Eq.~3.18! that we needb1

,0 andA150, which means that

l,l2 . ~4.7!

Similarly, from Eq. ~3.20! we requireB250 and b2,0,
leading to the restriction thatl,1/4b1b11. Since both
equations~3.18! and~3.20! must be integrable we need con
dition ~4.7! to hold in both cases: this provides an upp
bound for any considered possible isolated eigenvalues.
tice thatl250 at b51/2 andl2.0 for bÞ1/2.

The argument in the latter part of Sec. III B, from E
~3.25! onwards, can be employed here to show that the o
possible eigenfunction is that given byu0(t) in Eq. ~3.38!
whenl50. To check that such a perturbation is inL2

g it is
necessary to look at the behavior ast→6`; clearly,
u0(t)egt→0 ast→2` while

u0~t!egt;e2~t/2Ab!~2b21! ~4.8!

ast→`. Thereforeu0PL2
g providedb.1/2 in which case

u0 induces, as before, a phase shift to the original soluti
For 0,b<1/2 only the essential spectrum is available; th
indicates thatl50 is no longer an isolated eigenvalue a
therefore perturbations must decay monotonically to zero
L2

g ~isolated eigenvalues often vanish when working
weighted spaces@15#!. This also means, in contrast to th
previous cases, that there is no phase shift imposed upon
original solution for 0,b<1/2 when perturbations belong t
L2

g . These results are summarized in Fig. 2.

V. DISCUSSION

It has been shown that the traveling wave solution~1.2! is
linearly stable forb>1 and that there is always a sma
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phase shift to this original solution when it is subjected
small perturbations belonging toL2(R). The possible decay
properties of such perturbations have been characterize
Fig. 1 via an investigation of the possible spectrum aris
from the perturbation equation. In addition to the phase s
a superimposed monotonic and/or oscillatory decay is p
sible with these perturbations. For 0,b,1 the solution
~1.2! is stable when the small perturbations belong toL2

g

@defined in Eq.~4.1!# with g51/(2Ab). When 1/2,b,1
such perturbations induce a small phase shift while fo
,b<1/2 all perturbations decay to zero with, in contrast
the other cases, no phase shift imposed upon the orig
traveling wave. These decay properties are characterize
Fig. 2.

These results can be interpreted from the physical poin
view in relation to the work by Schilleret al. @4# via equa-
tions ~1.3!–~1.7!. Figure 3 shows contour plots for Eq.~1.7!
at b50, 1/2 and 1 for 0<a<85° and 0<u<85°. The three
ranges ofb considered in Secs. III and IV lead to thre
regions in theua parameter space as indicated in the figu
For each of these regions the possible effects of suita
small perturbations are summarized: the original travel
wave may or may not have an induced phase shift, as i
cated schematically in the figure; the possibilities for mon
tonic and/or oscillatory decay of the perturbations are a
shown.

Cladis and van Saarloos@1# have discussed marginal st
bility for b given by Eq.~1.8! for the same regimes of pos
tive values as discussed above. In summary, their result
dicate that for 0,b,1/2, the more relevant solution for th
problem they investigate is not the exact solution~1.2! but
rather a marginal stability solution with a wave speed
2(12b)1/2, relevant for small fields. Clearly, whenb51/2

FIG. 2. For 1/2,b,1 there is the possibility that perturbation
belonging toL2

g consist of monotonic decay superimposed upon
phase-shifted solution atl50 whenl.l2 . For 0,b<1/2 there
cannot be a phase-shifted solution and therefore all perturbatio
L2

g decay monotonically to zero.
in
g
ft
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al
in

of
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ly
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in-

f

this wave speed coincides with that given by Eq.~1.2!. The
results presented in this present article for 0,b,1/2 indi-
cate that the perturbation decays monotonically, that is,
~1.2! is stable inL2

g(R). This apparent inconsistency with th
work in @1# is resolved by other physical and mathematic
arguments@26# where the value of the velocity is ‘‘selected
by some type of dynamical mechanism whenb,1, as men-
tioned in @1#. Restricting the choice of perturbations so th
they belong toL2

g(R) limits the allowed physical forms o
perturbation: the larget behavior of the original perturbation
must be better controlled so that it is inL2

g(R). This means
that Eq.~1.2!, although mathematically a solution, is not
general the physically relevant solution forb,1/2 for the
problem in@1# unless the original perturbations to Eq.~1.2!
always lie inL2

g(R). A reported preliminary analysis by Cla
dis and van Saarloss~of @40# of Ref. @1#! shows that 1/2
,b,1 corresponds to a ‘‘case II marginal stability,’’ a
discussed by Ben-Jacobet al. @27#. In this regime the exac
solution ~1.2! is the physically relevant one. Forb.1 the
solution ~1.2! describes a front propagating from a met
stable state into a stable state and this exact solution is a
the physically meaningful one. Forb>1/2 the stability re-
sults reported here are therefore consistent with those in@1#
and there will always be a phase shift to Eq.~1.2! upon
perturbation forb.1/2 with, by the comments after Eq
~4.8!, no phase shift forb51/2. The decay properties of th
perturbations remain as discussed in Secs. III and
namely, monotonic decay for 1/2,b,1 and monotonic
and/or oscillatory decay forb.1. Front propagation and
marginal stability has been discussed further by van S
loos, Hecke, and Holyst@3#.

FIG. 3. Contours as indicated of the parameterb given by Eq.
~1.7! for 0<a<85° and 0<u<85°. The possible effects of suit
ably small perturbations are schematically summarized~see Secs.
III and IV in the text!. The possibility of an induced phase shift t
the original traveling wave~1.2! and the decay properties of th
perturbations are as shown. Perturbationsu belong toL2 for b>1
and toL2

g for b,1.

e

in
. E

@1# P. E. Cladis and W. van Saarloos, inSolitons in Liquid Crys-

tals, edited by L. Lam and J. Prost~Springer-Verlag, New
York, 1992!, pp. 110–150.

@2# J. E. Maclennan, N. A. Clark, and M. A. Handschy, inSolitons
in Liquid Crystals~Ref. @1#!, pp. 151–190.
@3# W. van Saarloos, M. van Hecke, and R. Holyst, Phys. Rev

52, 1773~1995!.
@4# P. Schiller, G. Pelzl, and D. Demus, Liq. Cryst.2, 21 ~1987!.



.

t

E

t.

-

-

l

S.

57 5633STABILITY OF TRAVELING WAVES IN SMECTIC-C . . .
@5# I. W. Stewart, T. Carlsson, and F. M. Leslie, Phys. Rev. E49,
2130 ~1994!.

@6# I. W. Stewart IMA, J. Appl. Math.~to be published!.
@7# G. J. Barclay and I. W. Stewart, Cont. Mech. Thermodyn.~to

be published!.
@8# I. W. Stewart and T. R. Faulkner, J. Phys. A28, 5643~1995!.
@9# I. W. Stewart and T. R. Faulkner, Cont. Mech. Thermodyn9

191 ~1997!.
@10# Solitons in Liquid Crystals, edited by L. Lam and J. Pros

~Springer-Verlag, New York, 1992!.
@11# I. W. Stewart, T. Carlsson, and R. W. B. Ardill, Phys. Rev.

54, 6413~1996!.
@12# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals

~Clarendon, Oxford, 1993!.
@13# F. M. Leslie, I. W. Stewart, and M. Nakagawa, Mol. Crys

Liq. Cryst. 198, 443 ~1991!.
@14# J. D. Logan,An Introduction to Nonlinear Partial Differential

Equations~Wiley, New York, 1994!.
@15# P. Grindrod,Patterns and Waves~Clarendon, Oxford, 1991!.
@16# E. Kreyszig, Introductory Functional Analysis with Applica

tions ~Wiley, New York, 1989!.
@17# G. Birkhoff and G.-C. Rota,Ordinary Differential Equations,
3rd ed.~Wiley, New York, 1978!.

@18# J. L. Troutman,Boundary Value Problems of Applied Math
ematics~PWS Publishing Company, Boston, 1994!.
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